BORON TRIFLUORIDE ETHERATE-CATALYZED BACKBONE REARRANGEMENT OF $3\alpha, 4\alpha$ - AND $3\beta, 4\beta$ -EPOXY-D:A-FRIEDO-18 β ,19 α H-LUPANES

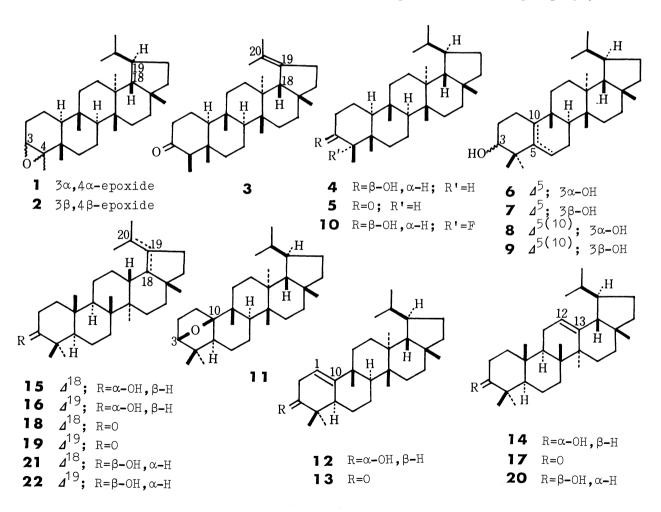
Yasushi YOKOYAMA, Yoshihiko MORIYAMA, * Takahiko TSUYUKI, and Takeyoshi TAKAHASHI*

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

*Institute of Chemistry, Kyoto Prefectural University of Medicine,
Taishogun, Kita-ku, Kyoto 603

Treatment of 3α , 4α - and 3β , 4β -epoxy-D:A-friedo-18 β , 19α H-lupanes with boron trifluoride etherate gave migrated lupane derivatives, D:B-friedo-18 β , 19α H-lup-5- and -5(10)-en-3-ols, 18 β , 19α H-lup-12-en-3-ols, lup-18-en-3-ols, and lup-19-en-3-ols. D:B-Friedo-18 β , 19α H-lup-1(10)-en-3 α -ol and 3β , 10β -epoxy-D:B-friedo-18 β , 19α H-lupane were also obtained from α - and β -epoxides, respectively. The reaction product ratios in the same reaction in various solvents are listed in Tables.

The studies on acid-catalyzed backbone rearrangements of triterpenes are of interest because these rearrangements constitute a model reversal of their biosynthesis. 1) There appear a number of reports on migrated oleanane, ursane, and hopane derivatives. 2) However, there are only a few reports on a series of migrated lupane derivatives. 3) In previous papers, we reported backbone rearrangements of 3α , 4α - and 3β , 4β -epoxyshionanes 4,5) and 3β , 4β -epoxyfriedelane 6) catalyzed by boron trifluoride etherate in various solvents. This paper deals with backbone rearrangements of 3α , 4α - and 3β , 4β -epoxy-D:A-friedo-18 β , 19 α H-lupanes (1 and 2) induced by boron trifluoride etherate to give migrated lupane derivatives. Solvent effect on the rearrangement reaction is also examined.


 $3\alpha,4\alpha$ -Epoxy- and $3\beta,4\beta$ -epoxy-D:A-friedo-18 $\beta,19\alpha$ H-lupanes (1 and 2) were prepared from friedelin via D:A-friedo-18 β -lup-19-en-3-one (3) β 0 and D:A-friedo-18 β 19 α H-lupan-3 β -ol (4); 7 the structure of 1 was unambiguously established by X-ray crystallographic technique. 7

Treatment of the 3α , 4α - and 3β , 4β -epoxides (1 and 2; 30-84 mg) in benzene, tetrahydrofuran, or ether (15-25 ml) with boron trifluoride etherate (0.3-0.5 ml) at room temperature or 0 °C gave a reaction mixture, which was separated by preparative TLC. The spectral data of five products (5-9) were identical with those of authentic samples, 7 respectively. A fluorohydrin (10) and a 3β , 10β -oxide (11) were easily assigned from their spectral data. The structure of a 1(10)-en-3 α -ol (12) was determined by its oxidation with the Jones reagent to yield 1(10)-en-3-one (13), the 1H-NMR spectrum of which showed the presence of a -CO-CH₂-CH= $\frac{1}{6}$ - grouping. An inseparable product mixture containing a 12-en-3 α -ol (14), an 18-en-3 α -ol (15), and a 19-en-3 α -ol (16) was oxidized with the Jones reagent giving a mixture of the cor-

responding ketones (17-19), which was separated by HPLC. This was the same for characterization of a mixture of unsaturated 3 β -ols (20-22); the mixture was oxidized and the oxidation product was subjected to separation by HPLC to yield 17, 18, and 19. Small-scale experiments using 1 or 2 (\underline{ca} . 10 mg) and boron trifluoride etherate (0.1 ml) were carried out in solvents (5-10 ml) such as acetonitrile, dichloromethane, hexane, and dimethoxyethane. These results were summarized in Tables 1 and 2.

The cationic center at C-4 was initially formed by boron trifluoride etherate-attack to an oxygen atom of the epoxide. These migrated lupane derivatives (6-9, 11, 12, 14-16, and 20-22) are considered to be derived from the corresponding intermediate cations, formed by a sequence of 1,2-shifts of methyl group(s) and hydride(s) from the C-4 cation. In a solvent [ether, tetrahydrofuran, or dimethoxyethane (DME)] apt to coordinate with a cation, the rearrangement reaction was interrupted in early stages to give the 5-ene (6 or 7), the 5(10)-ene (8 or 9), and the 38,108-epoxide (11), while the rearrangement in solvents with low nucleophilicity proceeds up to C/D/E rings. The formation of the 38,108-epoxide (11) is characteristic of the reaction of 2 in ether. In the product mixture from 1, a fluorohydrin derivative and 5 were undetectable.

The driving force to provoke backbone rearrangement in the rigid polycyclic

ring is considered to be a release⁸⁾ of intercyclic tension due to 1,3-diaxial interaction among the alkyl substituents (especially between the side chain and the 13α -methyl group in shionane series⁵⁾) and due to <u>cis</u>-fused D/E rings (in friedelane⁶⁾ and 18β -friedolupane series). D:C-Friedo-type products formed in the rearrangement of shionane series⁵⁾ were undetected in the product mixture from 1 and 2; this is considered to be due to a structure difference between the two frameworks of D:A-friedo-18 β ,19 α H-lupane and shionane.

Table 1. Relative Amount Ratios of the Products in the Reaction of the $3\alpha,4\alpha$ -Epoxide (1) with Boron Trifluoride Etherate at Room Temperature^{a)}

Solvents	Time (min)	5 - Ene	5(10)- Ene (8)	1(10)- Ene (12)	12-Ene	18 - Ene	19 - Ene	
٩)	·			~		~		
Hexane ^{d)}	30	8	18	0	40	24	10	
CH ₃ CN ^{d)}	30	6	13	0	34	13	34 .	
Benzene	60	trace ^{b)}	63 ^b)	0	₂₀ c)	₁₁ c)	6 ^{c)}	
CH ₂ Cl ₂ d) DME ^d) ²	30	3	46	0	29	16	6	
	30	17	67	12	2	trace	2	
Ether ^{d)}	30	15	76	3	2	1	3	
THF	45	15 ^{b)}	78 ^b)	7 ^b)	0	0	0	

a) Room temperature refers to a temperature range between 20 and 28 $^{\circ}$ C. b) Determined by isolation of the product. c) Determined by conversion of the product into the corresponding ketone, which was isolated by means of preparative HPLC. d) Determined by small-scale experiments; the reaction products were subjected to the Jones oxidation. Relative yields of the 1(10)-, 12-, 18-, and 19-enes were estimated from the peak area of the corresponding ketones on HPLC under the same conditions as described before (refs. 5, 6b). A mixture containing D:B-friedo- 18β , 19α H-lup-5-en-3-one and 5(10)-en-3-one (ref. 7) was separated by HPLC and examined by GLC to determine relative yields of 5- and 5(10)-enes.

Table 2. Relative Amount Ratios of the Products in the Reaction of the $3\beta,4\beta$ -Epoxide (2) with Boron Trifluoride Etherate at Room Temperature^{a)}

Solvents	Time (min)	D:A- Friedo-	Fluoro- hydrin	5 - Ene	5 (10)- Ene	3β,10β- Oxide	12 - Ene	18 - Ene	19 - Ene
		3-one (5)f)	(<u>10</u>) ^{f)}	(7)	(2)	(11) ^{f)}	(20)	(21)	(22)
Hexaned)	60	trace	trace	21	22	0	23	10	24
CH ₃ CN ^d)	60	0 ,	7	11 (38	0	27	9 .	8 ,
Benzene	60	₂ b)	₄ b)	13 ^{b)}	10 ^c)	0	18 ^{c)}	43 ^{c)}	10 ^{c)}
CH ₂ Cl ₂ d)	60	0	3	25	33	0	16	14	9
CH ₂ Cl ₂ Cl ₂ DMEd)	60	0 ,	0 .	26	67	2 ,	2	1	2
Ether ^e)	20	3 ^b)	₂₅ b)	13 ^b)	33 ^b)	₂₆ b)	0	0	0
THF	45	0	19 ^b)	12 ^{b)}	69 ^b)	0	0	0	0

Footnotes a - d are the same as those in Table 1. e) The reaction was carried out at 0 °C. f) Determined by GLC before the oxidation for small-scale experiments. GLC conditions: Shimadzu Gas Chromatograph GC-6A, FID; column, Dexsil 300GC; column temperature, 270 °C.

Characterization of products is as follows: 4α -fluoro-D:A-friedo-18 β , 19α Hlupan-3β-ol (10): mp 171 $^{\circ}$ C, IR 3470 cm⁻¹, 1 H-NMR 9) δ 0.84-0.93 (5 x CH₃), 1.07 and 1.25 (each 3H, s), 1.33 (3H, d, J=24 Hz; 4β -CH₃), 5) 3.68 (1H, m, W_{1/2}=13 Hz; 3α -H); MS m/e 446,3935 (M⁺; $C_{30}H_{51}OF$); 3β , 10β -epoxy-D:B-friedo-18 β , 19α H-lupane (11): mp 136-138 °C, ¹H-NMR δ 0.84-1.03 (6 x CH₃), 1.67 (6H, s), 3.72 (1H, d, J=5.5 Hz; $3\alpha-H$), 5, 6a) MS m/e 426.3861 (M⁺; $C_{30}H_{50}O$); D:B-friedo-18 β , $19\alpha H$ -lup-1(10)-en-3 α -ol (12): mp 103-109 $^{\circ}$ C, IR 3400 cm⁻¹, ^{1}H -NMR δ 0.63, 0.82, 1.01, 1.10 (each 3H, s), 0.89 (6H, d, J=6Hz), 0.96 (6H, s), 3.34 (1H, m, $W_{1/2}$ =7 Hz; 3 α -H), 5.22 (1H, m, $W_{1/2}=8~Hz;$ 1-H), MS m/e 426.3847 (M⁺; $C_{30}H_{50}O);$ D:B-friedo-18 β , 19 α H-lup-1(10)-en-3-one (13): mp 215-218 °C, IR 1710 cm⁻¹, H-NMR δ 2.75 and 3.01 (each 1H, dt, $J_{2\alpha,2\beta}=21~Hz$, $J_{1,2}=3~Hz$; $J_{2,5}=3~Hz$; 2 α -H and 2 β -H), MS m/e 424.3710 (M⁺; $C_{30}H_{48}O$); 18 β , 19 α H-lup-12-en-3-one (17): mp 152.5-153 °C, IR 1710, 850 cm⁻¹, H-NMR δ 0.77 and 0.87 (each 3H, d, J=6 Hz), 0.94 and 1.01 (each 3H, s), 1.07 and 1.13 (each 6H, s), 5.21 (1H, t, J=4 Hz; 12-H), MS m/e 424.3708 (M⁺; $C_{30}H_{48}O$) and m/e 218.2064 ($C_{16}H_{26}$; due to retro-Diels-Alder fragmentation); <u>lup-18-en-3-one</u> (18): mp 167-168 °C, IR 1710 cm⁻¹, 1 H-NMR δ 0.82-4 $\mathfrak{D}5$ (7 x CH₃), 1.07 (3H, s), MS m/e 424.3691 ($C_{30}H_{48}O$); the spectral data of 18 were identical with those of authentic specimen prepared from 3β-acetoxy-lupa-18,20(29)-diene 10) by hydrogenation and successive treatment with lithium aluminium hydride and the Jones reagent (and purification by HPLC). lup-19-en-3-one (19): mp 174-177 °C, IR 1712 cm⁻¹, ¹H-NMR δ 0.77, 0.91, 0.95, 1.06 (each 3H, s), 1.01 (6H, s), 1.53 and 1.55 [each 3H, s, $>C=C(CH_3)_2$], MS m/e 424.3711 $(C_{30}H_{48}O).$

References and notes

- 1) E.J.Corey and J.J.Ursprung, J. Am. Chem. Soc., 78, 5041 (1956); R.M.Coats, Tetrahedron Lett., 1967, 4143; H.W.Whitlock, Jr. and M.C.Smith, ibid., 1968, 821, and references cited therein.
- 2) <u>E.g.</u> T.K.Devon and A.I.Scott, "Handbook of Naturally Occurring Compounds," Academic Press, New York and London (1972), Vol. II (Terpenes); "Terpenoids and Steroids," ed by K.H.Overton, The Chemical Society, London, Vol. 1 (1971) Vol. 8 (1978).
- 3) a) A.G.González, F.G.Jerez, and M.L.Escalona, An.Quim., <u>69</u>, 921 (1973); Chem. Abstr., <u>80</u>, 24792n; b) E.Suokas and T.Hase, Acta Chim. Scand., <u>B28</u>, 793 (1974);
- c) Y.Yokoyama, T.Tsuyuki, Y.Moriyama, T.Murae, H.Toyoshima, and T.Takahashi, Bull. Chem. Soc. Jpn., 52, 1720 (1979).
- 4) S.Yamada, S.Yamada, K.Tachibana, Y.Moriyama, Y.Tanahashi, T.Tsuyuki, and T. Takahashi, Bull. Chem. Soc. Jpn., 49, 1134 (1976).
- 5) K.Tachibana, M.Tori, Y.Moriyama, T.Tsuyuki, and T.Takahashi, Bull. Chem. Soc. Jpn., 50, 1552 (1977).
- 6) a) M.Tori, T.Torii, K.Tachibana, S.Yamada, T.Tsuyuki, and T.Takahashi, Bull. Chem. Soc. Jpn., 50, 469 (1977); b) M.Tori, T.Tsuyuki, and T.Takahashi, ibid., 50, 3381 (1977).
- 7) Y.Yokoyama, Y.Moriyama, T.Tsuyuki, T.Takahashi, A.Itai, and Y.Iitaka, Chem. Lett., 1979, 1463.
- 8) \underline{E} .g. P.de Mayo, "Molecular Rearrangements," Vol. 2, John Wiley and Sons, New York (1964), p.821.
- 9) All ¹H-NMR spectra were determined in CDCl₃.
- 10) Cf. G.V.Baddeley, J.J.H.Simes, and T.G.Watson, Tetrahedron, 26, 3799 (1970).